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SUMMARY

The fourth-order ®nite difference method is combined with the vorticity±streamfunction formulation in
generalized co-ordinates. Direct numerical simulations are performed for channel ¯ows with and without surface
roughness at a Reynolds number of 104. The present results are in good agreement with those of the
pseudospectral method with respect to the ¯ow in a smooth channel. It is shown that the present method predicts
well the precise change in the ¯ow with the channel length and roughness height. The turbulence is generally
weakened by the roughness. Laminarization is also accomplished under the appropriate condition. # 1977 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Drag reduction is an important problem and several different means of achieving it, such as riblets,

polymer additions and compliant walls, have been investigated.1,2 Recently, Manuilovich3 proposed

laminarization of the boundary layer by surface roughness. It is shown theoretically that the

Tollmien±Schlichting wave (T±S wave) cancels over the appropriate surface roughness. This

suggests that the drag reduction is produced by two-dimensional means. On the other hand, Liu et al.4

conducted numerical simulations of the ¯ow in a rough channel by the multilevel method and showed

that the T±S wave is strengthened by the roughness. However, in these investigations the disturbance

is assumed to be small and linearization of the Navier±Stokes equation is applied. In the present paper

we conduct numerical simulations of turbulent ¯ows in smooth and rough channels, using the

Navier±Stokes equation. It is well known that turbulent ¯ow is governed by the complex temporal

and spatial structure and therefore numerical results depend signi®cantly on the computational

method. For this we use the fourth-order-accurate difference method5,6 combined with the vorticity±

streamfunction formulation.7,8 In a smooth channel ¯ow we compare the results with those of

JimeÂnez9 using the pseudospectral method. In a rough channel ¯ow we study the drag reduction and

laminarization of the ¯ow.
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2. GOVERNING EQUATIONS AND COMPUTATIONAL METHODS

2.1. Vorticity±streamfunction formulation

For the computation of channel ¯ow with surface roughness the generalized co-ordinates

x � x�x; Z�; y � y�x; Z� �1�
are adopted. In order to satisfy the equation of continuity rigorously, we use the vorticity±

streamfunction formulation. Then the governing equations consist of the vorticity transport equation

and the Poisson equation for the streamfunction, i.e.
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and J denotes the Jacobian. The velocity components u and v
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These equations are non-dimensionalized with the channel half-width d and the centre velocity of the

Poiseuille ¯ow, Uc. Re denotes the Reynolds number.

2.2. Boundary conditions

The computational domain is depicted in Figure 1, where Lx represents the channel length. The

surface roughness is given by4

r�x� � k sech2�
���
2
p
�xÿ xp��; �7�

where k denotes the roughness height and xp the location of the roughness. In the present study, k is

chosen as 0�02 or 0�06, and xp� p.

The streamfunction takes constant values of � 2
3

at the upper and lower walls, respectively. The

boundary vorticity is calculated from the following de®nition, where the non-slip condition is applied

at the channel wall:
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On the other hand, a periodic boundary condition is imposed in the streamwise direction.

1108 H. TOKUNAGA AND A. YAMAUCHI

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1107±1117 (1997) # 1997 John Wiley & Sons, Ltd.



2.3. Computational Grid

In order to calculate the channel ¯ow with surface roughness, the computational grid is given as
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where ri denotes the roughness height at x� xi, the parameter a� 0�9, and I and J represent the total

grid numbers in the x- and Z-direction respectively.

2.4. Fourth-order difference method

In order to solve accurately the unsteady ¯ow with the complex spatial structure, we use the fourth-

order-accurate centred difference method without numerical dissipation. In the present method the

spatial discretization and time integration are treated separately. For example, the ®rst and second

derivatives of o with respect to x are differenced as
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where Dx denotes the grid spacing in the x-direction. The derivatives for Z and the cross-derivative

are also differenced in the same manner. Then the vorticity transport equation is reduced to a set of

ordinary differential equations (ODEs) with respect to the vorticity values at all inner grid points:

d ~o
dt
� ~F� ~o�; �11�

~o � �o2;2;o3;2; . . . ;oIÿ1;Jÿ1�T; �12�
The set of ODEs is integrated with the fourth-order Runge±Kutta±Gill method.

The same spatial discretization is adopted for the Poisson equation. The point Jacobi method is

used as the relaxation in the x-direction for vectorizing the computational code, since the Fujitsu

FACOM VP-2600 and VPP-500 used in the present computations have a long-pipeline architecture

and approximately 500 processors are aligned. The SOR method, however, is applied in the Z-

direction for accelerating the convergence even though the fourth-order difference method is being

used. The acceleration factor is chosen appropriately for getting the optimum convergence rate. As a

result of several trial computations it is found that a large number of relaxation sweep are necessary,

Figure 1. Computational domain
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since the ¯ow ®eld changes drastically in time. If the relaxation sweep is insuf®cient, the turbulence

weakens signi®cantly.

3. COMPUTATION OF TURBULENT FLOW IN SMOOTH CHANNEL

The ¯ow in a smooth channel has already been computed for a number of conditions.8 In the present

paper we describe only the computational results at Re� 104 for comparison with the ¯ow in a rough

channel.

3.1. Computation of ¯ow in period doubling

The channel ¯ow at Re� 104 is computed for Lx� 2p with a 129697 grid. Figure 2 depicts the

time evolution of the wall shear stress O, which shows that the ¯ow is in a state of period doubling.

The time-averaged wall shear stress equals 3�551, the maximum amplitude of the oscillation 0�053

and the minimum amplitude 0�040, which are in good agreement with JimeÂnez's results, namely

3�547, 0�053 and 0�038 respectively.

The vorticity isolines are shown in Figure 3, where two periodic regions are depicted. It is shown

that the vortex elongates extremely and tears, while the torn vortex approaches the wall. The

agreement of the present result with JimeÂnez's computation is quite good.

3.2. Computation of two-dimensional turbulence in long channel

Here we deal with the computation of a chaotic ¯ow in a channel. The channel length is chosen as

8p, the Reynolds number 104, the grid 6156121 and the time spacing Dt� 0�01. Basically, the initial

streamfunction is constructed with the preceding solution c2p(x, y, t0) with periodicity 2p, where t0
represents an appropriate time. However, in order to change the periodic length to 8p, the

streamfunction is actually given as

c�x; y; 0� � �1� 0�05 cos�x=4��c2p�x; y; t0�: �13�
Figure 4 depicts the vorticity isolines from t� 330 to 340. The vortex rolls up from the wall,

elongates and tears. However, the torn vortex approaches the wall and merges into another rolled-up

Figure 2. Time evolution of wall shear stress in smooth channel at Lx� 2p: (a) present results; (b) JimeÂnez's result
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vortex, in the present case. After a short period the merging vortex separates from the rolled-up

vortex, approaches a newly rolled-up vortex and disturbs the vortex elongation. Therefore the vortex

interactions in four regions of length 2p are not independent of each other, so that irregularity arises

and the ¯ow becomes chaotic.

The time evolution of the wall shear stress is plotted for the upper wall until t� 350 in Figure 5.

The period-doubling structure is seen at the initial stage and then the chaotic structure appears.

The magnitude of the wall shear stress increases by 15% compared with the result in the short

channel.

4. COMPUTATION OF TURBULENT FLOW IN CHANNEL WITH ROUGHNESS

4.1. Computation of ¯ow in short rough channel

The ®rst computation of channel ¯ow with surface roughness is carried out for Lx� 2p and

k� 0�06. Under this condition the ¯ow is in a state of period doubling if the surface roughness is not

imposed, as described in the preceding section.

A 128685 grid was necessary to resolve the ¯ow. Figure 6 depicts the time evolution of the wall

shear stress at the lower and upper walls from t� 1000 to 1600. It is con®rmed that the ¯ow is in a

state of period doubling as in the smooth channel. However, the mean wall shear stress of 3�22 on the

Figure 3. Vorticity isolines in smooth channel: (a) present results; (b) JimeÂnez's result (o� 0, �1�5)

(a) (b)
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lower wall is smaller than that of 3�65 on the upper wall and the value of 3�55 in the smooth channel.

The vorticity isolines are depicted at t� 1600 in Figure 7. The same rolled-up vortex is created from

the upper wall as in the smooth channel. However, signi®cant interaction between the rolled-up

vortex and the rough wall is found on the lower wall. As a result of this interaction the rolled-up

vortex is weakened.

4.2. Computation of turbulent ¯ow in long channel with surface roughness

In order to investigate the effect of surface roughness on two-dimensional turbulence, a numerical

simulation is conducted for a ¯ow with roughness height k� 0�02 and channel length 8p. A

1024685 grid is necessary in the present computation.

Figure 4. Vorticity isolines of turbulence in smooth channel at Lx� 8p (o� 0, �1�5)
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Figures 8 and 9 show the vorticity isolines and streamlines respectively in the fully developed

state. It is seen that the rolled-up vortex is weakened by the surface roughness and recovers its

strength soon after passing the roughness. The separation bubbles in Figure 9 show the same tendency

as the vorticity structure. The time evolution of the wall shear stress is depicted from t� 260 to 400 in

Figure 10. The time-averaged values are 3�2 and 3�5 on the lower and upper walls, respectively,

which are signi®cantly smaller, than those of the smooth channel. Therefore it is shown that drag

reduction is achieved by the roughness.

4.3. Computation of turbulent ¯ow in medium channel with surface roughness

In order to study the possibility of laminarization of the ¯ow by the surface roughness, a

computation is carried out for a medium channel with Lx� 4p and k� 0�06. The initial condition is

given by ®tting the velocity ®eld of plane Poiseuille ¯ow to the channel with surface roughness. In

this case a 512685 grid is necessary. The history of the x-directional velocity is depicted at the point

x� 0 and the ®fth grid point in the Z-direction in Figure 11. A strong disturbance is ®rst generated,

which then changes to a small oscillation. The wall shear stress on the lower and upper walls is shown

Figure 5. Time evolution of wall shear stress in smooth channel at Lx� 8p

Figure 6. Time evolution of wall shear stress in rough channel at Lx� 2p and k� 0�06
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Figure 7. Vorticty isolines in rough channel at Lx� 2p, k� 0�06 and t� 1600

Figure 8. Vorticity isolines in rough channel at Lx� 8p and k� 0�02
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in Figure 12, where complete laminarization is found. Figure 13 depicts the vorticity contours at

t� 360, which show that the disturbance is trapped on the roughness and eliminated.

5. CONCLUSIONS

The fourth-order difference method is implemented with the vorticity±streamfunction formulation in

a generalized co-ordinate system and numerical simulations are conducted for ¯ows in channels with

and without surface roughness. From the results the following conclusions are obtained.

Figure 9. Streamlines in rough channel at Lx� 8p and k� 0�02

Figure 10. Time evolution of wall shear stress in rough channel at Lx� 8p and k� 0�02
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1. Good agreement with JimeÂnez's result is obtained with respect to the ¯ow in a smooth channel,

in which period-doubling is realized.

2. In a long channel, chaotic ¯ow is produced which consists of ejection, tearing, sweeping and

merging of vortices.

3. It is shown that the surface roughness has the effect of weakening the turbulence.

Laminarization of the ¯ow is accomplished under the appropriate condition.

Figure 11. Time history of x-directional velocity near wall in rough channel at Lx� 4p and k� 0�06

Figure 12. Time evolution of wall shear stress in rough channel at Lx� 4p and k� 0�06
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Figure 13. Vorticity isolines in rough channel at Lx� 4p and k� 0�06
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